The final exam will count as approximately 15% of your final grade in Chemistry B.

Exam Format:

- Multiple choice ~ 35 questions
- Free Response/Calculations: ~ 35 points
- The exam will cover material from the entire trimester, but will emphasize material from the last unit including molecular structure, intermolecular forces, and heating curves.

Materials you need to bring:

Calculator, \#2 pencil, your Periodic Table with references on the back.

Materials provided:

VSEPR geometry sheet, any constants or values not provided on the periodic table, scantron, and scratch paper. Topics covered on the exam, and skills that may be assessed:

Unit 1: Scientific Measurement \& Chemical Quantities

Measurement \& Significant Figures: Ch 3-4

1. Record the volume of liquid pictured to the left. Use the correct significant figures and units.
2. Someone else measures out 32.3 mL of liquid and adds it to the liquid you measured in problem 1, above. Calculate the total volume of the combined solution and record the value using significant figures and units.

Molar Conversions, Percent Composition, Empirical and Molecular Formulas: Ch 7 (pg. 170-196)

1. Determine the number of representative particles in each of the following:
a. $1.00 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}$
\square
c. 1.00 mol Hf
b. $1.00 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
d. $1.00 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

2. Determine the number of moles of each of the following:
a. $6.022 \times 10^{23} \mathrm{Al}(\mathrm{OH})_{3}$ particles \square c. 178.5 g of Hf
b. $22.4 \mathrm{~L} \mathrm{of} \mathrm{CO}_{2}$ (@STP)
d. 180.156 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

3. Find the empirical formulas for the given molecular formulas. The first one has been done as an example.
a. $\mathrm{C}_{8} \mathrm{H}_{18}$
b. $\mathrm{N}_{2} \mathrm{H}_{4}$

$\div 2 \mathrm{C}_{4} \mathrm{H}_{9}$

c. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
d. $\mathrm{P}_{4} \mathrm{O}_{10}$
\qquad e. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}$
f. $\mathrm{Se}_{3} \mathrm{O}_{9}$ \square
4. Determine the percent composition by mass of each element in the following compounds:
a. LiCl
b. $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
c. $\mathrm{Hg}(\mathrm{OH})_{2}$
5. Use percent composition by mass to determine the empirical formula of each of the following compounds:
a. A compound that is 34.43% iron and 65.57% chlorine.
b. A compound that contains 85.6% carbon and 14.4% hydrogen.
c. A compound that is 45.9% potassium, 16.5% nitrogen, and 37.6% oxygen.
6. Determine the molecular formulas for each of the following:
a. A compound with a molecular mass of $78.1 \mathrm{~g} / \mathrm{mol}$ and an empirical formula of CH
b. A compound with a molecular mass of $32.1 \mathrm{~g} / \mathrm{mol}$ and an empirical formula of NH_{2}
c. A compound with a molecular mass of $88.0 \mathrm{~g} / \mathrm{mol}$ and an empirical formula of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

Unit 2: The Behavior of Gases - Ch 12 (pp. 327-355)

1. Draw a graph showing the general trend for each of the following gas law relationships and identify the whether the relationship is direct or inverse.

$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$	
Direct or Inverse	$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}$
Direct or Inverse	$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
Direct or	
Inverse	

2. A rigid container holds a gas at a pressure of 55 kPa and a temperature of $-100.0^{\circ} \mathrm{C}$. What will the pressure be when the temperature is increased to $200.0^{\circ} \mathrm{C}$?
3. A helium balloon has a volume of 25.0 L at 102.0 kPa and $24^{\circ} \mathrm{C}$. Determine its volume at standard temperature and standard pressure(STP).
4. Calculate the grams of oxygen $\left(\mathrm{O}_{2}\right)$ in a 12.5 L tank if the pressure is $25,325 \mathrm{kPa}$ and the temperature is $22.0^{\circ} \mathrm{C}$.

Unit 3, Part 1: Molarity and Solutions - Ch 18 (pp. 509-515)

1. Determine the molarity of a 100 mL solution made by dissolving 4.95 g NaCl in water.
2. Determine the mass in grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 15 mL of a $2.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution.
3. What volume of 12 M HCl solution will contain 1.0 moles of HCl ?
4. Determine the final concentration of a solution made by diluting 23.4 mL of 6.0 M NaCl stock solution to a final volume of $250 . \mathrm{mL}$
5. Balance the chemical equation below, and use it for the questions 2 through 6:

$$
\ldots \mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

2. Determine the molar masses (with units) of each reactant and product:
$\mathrm{C}_{2} \mathrm{H}_{6}$:
O_{2} :
3. How many moles of CO_{2} are formed when 3.7 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ are reacted with excess oxygen?
4. Determine the mass of water produced if 64.8 grams of $\mathrm{C}_{2} \mathrm{H}_{6}$ combust with excess oxygen.
5. How many liters of oxygen are needed to react with 12.5 L of $\mathrm{C}_{2} \mathrm{H}_{6}$? Assume standard temperature and pressure.
6. What mass of carbon dioxide gas will be produced when $15.6 \mathrm{~g} \mathrm{of}_{2} \mathrm{H}_{6}$ is reacted with excess oxygen?

If this reaction were carried out and only 40.6 g of carbon dioxide were produced, what would be the percent yield?
7. Balance chemical equation for the single-replacement reaction between aluminum and iron (II) sulfate, and use it to complete the following problems:

$$
\ldots \ldots \mathrm{Al}(\mathrm{~s})+\ldots \mathrm{FeSO}_{4} \rightarrow \ldots \mathrm{Fe}+\ldots \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

8. Determine the molar masses of each reactant and product:
Al : \square : \square

9. Calculate the number of aluminum atoms need to react with 2.56 moles of iron (II) sulfate.
10. How many grams of iron can be produced if 1.25 g of aluminum and 9.05 g of iron (II) sulfate are reacted?
\square
Which reactant is the limiting reactant? \qquad Which is the excess reactant? \qquad
Determine the grams of unreacted excess reactant that remain after the reaction is complete.
11. In the lab, 0.55 grams of aluminum are reacted with excess iron (II) sulfate. Calculate the percent yield if the reaction produces 1.52 grams of iron.
12. Solid carbon and liquid water react to produce carbon tetrahydride gas and carbon dioxide gas. The balanced chemical reaction is written below.

$$
2 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

a. 35.0 g of solid carbon react with excess water. Determine the theoretical yield (in liters) of carbon tetrahydride gas produced at STP.
b. How many grams of carbon dioxide can be expected from the reaction if the percent yield is 85.0% ?

Unit 4: Covalent Compounds and Intermolecular Forces - Ch 16 \&17 (pp. 436-466 \& 474-477)

1. According to the octet rule, most atoms become more stable when they have \qquad valence electrons. The exception to this rule is \qquad , which is most stable with \qquad valence electrons.
2. How do you know whether a molecule will experience:
a. dispersion forces
b. dipole-dipole attractions
c. hydrogen bonding
3. State whether the following compounds contain polar covalent bonds, non-polar covalent bonds, or ionic bonds, based on their electronegativities.
a. KF
b. SO_{2}
c. NO_{2}
d. Cl_{2}
e. $\mathrm{Na}_{2} \mathrm{O}$
f. O_{2}

$\Delta \mathrm{EN}$	bond type
$0.0-0.4$	nonpolar covalent
$0.4-1.0$	moderately polar covalent
$1.0-2.0$	very polar covalent
≥ 2.0	ionic

4. Draw the Lewis dot structures for the following compounds, and identify the strongest type of cohesive intermolecular attraction each molecule will experience.
a. Br_{2}
b. CBr_{4}
c. $\mathrm{CH}_{2} \mathrm{Br}_{2}$
d. $\mathrm{CH}_{3} \mathrm{OH}$

5. Which of the compounds in problem 4 do you expect to have the highest boiling point?
6. Predict the order these compounds will evaporate in at room temperature. Which will be the most volatile?

$$
\text { fastest } \quad \ldots \ldots \text { _____ slowest }
$$

7. Define the following terms and explain how they are related to intermolecular attractions. Cohesion:

Adhesion:

Surface Tension:

8. The figure below indicates the shape of a droplet with high surface tension.
a. For the droplet pictured, which is stronger, the adhesive forces or the cohesive forces? \qquad
b. Sketch how the shape of the droplet will change if something is added to weaken the cohesive forces.
c. Sketch how the shape of the droplet will change if it is put on a surface with stronger adhesive forces.

a.
b.
c.

Complete the Table: *If a compound has resonance, be sure to draw all possible structures.

Draw the Dot Structure	Draw the 3-D structure	Name the VSEPR Shape, and indicate polarity	Check $(\boldsymbol{\checkmark})$ all forces present \& Circle or box the \boxtimes to identify the strongest force.	
HF:	3-D Structure:	Shape Name: Polar or Nonpolar?	dispersion	
			dipole-dipole	
			hydrogen bonding	
PF ${ }_{3}$:	3-D Structure:	Shape Name: Polar or Nonpolar?	dispersion	
			dipole-dipole	
			hydrogen bonding	
$\mathbf{S O}_{\mathbf{2}}$:	3-D Structure:	Shape Name: Polar or Nonpolar?	dispersion	
			dipole-dipole	
			hydrogen bonding	
XeF ${ }_{4}$:	3-D Structure:	Shape Name: Polar or Nonpolar?	dispersion	
			dipole-dipole	
			hydrogen bonding	
$\mathbf{N H}_{3}$:	3-D Structure:	Shape Name: Polar or Nonpolar?	dispersion	
			dipole-dipole	
			hydrogen bonding	
PF_{5} :	3-D Structure:	Shape Name: Polar or Nonpolar?	dispersion	
			dipole-dipole	
			hydrogen bonding	

$\mathbf{H}_{\mathbf{2}} \mathbf{O}:$	3-D Structure:	Shape Name:	dispersion	
		Polar or Nonpolar?	dipole-dipole	
SF $_{4}:$	3-D Structure:	Shape Name:	hydrogen bonding	
$\mathbf{P O}_{4}{ }^{3-}:$	Polar or Nonpolar?	dispersion		

9. Identify the types of intermolecular forces each of these compounds will exert. Then identify the compounds from the table above that the compound is likely to adhere strongly to.
a. CH_{4}
b. $\mathrm{H}_{2} \mathrm{O}$
10. In which direction does heat flow when two objects of different temperatures come into contact with one another? Give an example from your own experience.
11. Is freezing a popsicle an endothermic or an exothermic process? Explain your answer.
12. Complete the following table: Fill in what you'd expect to see for exothermic versus endothermic systems.

	Exothermic	Endothermic
Sign of $\Delta \mathrm{H}_{\text {system }}$		
Heat flow (in/out of system)		
Measured $\Delta \mathrm{T}$ of Surroundings		
2 Examples		

A heating curve is shown to the right.
4. Label each section of the curve with the corresponding phases ($\mathrm{s}, \mathrm{l}, \mathrm{g}, \mathrm{etc}$).
5. Match each step on the heating curve for water to the corresponding behavior (write the letters by the steps).

Description of Behavior
A. Energy is used to increase the temperature of solid ice.
B. Energy is used to increase the temperature of liquid water.
C. Energy is used to increase the temperature of gaseous water (steam).
D. Energy is used to melt ice ($\mathrm{S} \rightarrow \mathrm{L}$).
E. Energy is used to vaporize water $(\mathrm{L} \rightarrow \mathrm{G})$

6. Identify the steps (1 to 5) on the heating curve above that correspond to each of the terms listed below - some terms refer to multiple steps.
a. heat of fusion
step (s) \qquad
b. heat of vaporization
step (s) \qquad
c. heat of solidification
step (s) \qquad
d. heat of condensation
step (s) \qquad
e. latent heat
step (s)
f. sensible heat
step (s)

For the following questions, refer to the table of specific heat values to the right.
7. Compare the specific heats of ethanol and mercury. Which substance requires less energy to heat to a higher temperature? Why? (Assume equal masses.)

Specific Heat	
	$\mathrm{J} \cdot{ }^{\circ} \mathrm{C}$
Ethanol	2.44
Mercury	0.14
Hydrogen	14.30
Radon	0.094
Water	4.18

8. Which requires more energy to increase the temperature by $1^{\circ} \mathrm{C}$? Explain why.
1 g ethanol $\quad 1000 \mathrm{~g}$ ethanol $\quad 1 \mathrm{~g}$ mercury $\quad 1000 \mathrm{~g}$ mercury
9. The element hydrogen has the highest specific heat of all elements. Determine the amount of energy needed to raise the temperature of a 340.0 g sample of hydrogen by $30^{\circ} \mathrm{C}$.
10. Brass is an alloy made from copper and zinc. A 590.0 g brass candlestick has an initial temperature of $98.0^{\circ} \mathrm{C}$. When $2.11 \times 10^{4} \mathrm{~J}$ of energy is removed from the candlestick, its temperature decreases to $6.8^{\circ} \mathrm{C}$. Determine the specific heat of brass.
11. The element radon has the lowest specific heat of all naturally occurring elements. Calculate the change in heat needed to cool 35.0 g of radon by $10.0^{\circ} \mathrm{C}$.

Thermodynamic Properties of Various Substances

Substance	$\mathrm{C}_{\text {solid }}\left(\frac{\mathrm{J}}{\mathrm{g} \cdot{ }^{\circ} \mathrm{C}}\right)$	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{H}_{\text {fus }} \frac{\mathrm{J}}{\mathrm{g}}$	$\mathrm{C}_{\text {liq, }}\left(\frac{\mathrm{J}}{\mathrm{g} \cdot{ }^{\circ} \mathrm{C}}\right)$	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{H}_{\text {vap }} \frac{\mathrm{J}}{\mathrm{g}}$	$\mathrm{C}_{\text {gas }}\left(\frac{\mathrm{J}}{\mathrm{g} \cdot{ }^{\circ} \mathrm{C}}\right)$
Water	2.10	0.00	334	4.18	100.0	2260	2.00
Ethanol	2.47	-117	109	2.49	78	838	1.74
Benzene	1.51	5.5	444	1.73	80.1	390	1.06

12. Sketch a cooling curve for benzene.
a. Label the temperature axis with the melting point and the boiling point, and identify the phases for each section of the curve.
b. Using only variables, write the equation you would use to calculate the change in energy when 35.0 g of benzene is cooled from $85.4^{\circ} \mathrm{C}$ to $10.2^{\circ} \mathrm{C}$ (don't solve them).

Heat Removed at a Constant Rate
Determine the amount of heat gained or lost during each of the following changes. (Use the values provided above.) 13.45 .0 g of liquid water at $20^{\circ} \mathrm{C}$ is converted to steam at $115^{\circ} \mathrm{C}$.
14. 220.0 g of solid water at $-35.0^{\circ} \mathrm{C}$ is heated to form liquid water at $50.0^{\circ} \mathrm{C}$.

15. 20.0 g of benzene at $-45.0^{\circ} \mathrm{C}$ is heated to $10.5^{\circ} \mathrm{C}$.

