1. Find the electronegativity difference between carbon (C) and chlorine (Cl), and indicate the type of bond that will form.

a.	$0.0-0.4$	nonpolar covalent
b.	$0.4-1.0$	moderately polar covalent
c.	$1.0-2.0$	very polar covalent
d.	≥ 2	ionic

2. Which measurement correctly reflects the volume shown in this graduated cylinder?
a. $\quad 36 \mathrm{~mL}$
b. $\quad 36.2 \mathrm{~mL}$
c. $\quad 36.20 \mathrm{~mL}$
d. $\quad 36.200 \mathrm{~mL}$
3. Mercury forms a convex meniscus in glass, as shown in the picture to the right. This indicates that \qquad
a. There are no intermolecular forces present.
b. The adhesive forces are stronger than the cohesive forces.
c. The cohesive forces are stronger than the adhesive forces.
4. What is the percent composition of CO_{2} ?
a. $\quad 27.29 \% \mathrm{C}$ and $72.71 \% 0$
b. $\quad 27.29 \% \mathrm{C}$ and $36.36 \% 0$
c. $\quad 42.88 \% \mathrm{C}$ and $57.12 \% 0$
d. $\quad 42.88 \% \mathrm{C}$ and $72.71 \% \mathrm{O}$
5. Determine the empirical formula of a compound with 87.4 \% nitrogen and 12.6 \% hydrogen.
a. NH
b. NH_{2}
c. $\quad \mathrm{N}_{2} \mathrm{H}_{4}$
d. $\quad \mathrm{N}_{6} \mathrm{H}_{12}$
6. Which of the following is an empirical formula?
a. $\mathrm{C}_{6} \mathrm{H}_{12}$
b. $\mathrm{C}_{4} \mathrm{H}_{8}$
c. $\mathrm{C}_{3} \mathrm{H}_{8}$
d. $\mathrm{C}_{3} \mathrm{H}_{6}$
7. How many milliliters of 6.00 M HCl are needed to make 0.250 L of 3.00 M solution?
a. $\quad 0.125 \mathrm{~mL}$
b. $\quad 0.50 \mathrm{~mL}$
c. $\quad 125 \mathrm{~mL}$
d. 500 mL
8. A 1.50 L balloon is sealed at $25^{\circ} \mathrm{C}$. Predict the volume if the balloon is heated to $35^{\circ} \mathrm{C}$.
a. $\quad 1.07 \mathrm{~L}$
b. $\quad 1.45 \mathrm{~L}$
c. $\quad 1.55 \mathrm{~L}$
d. $\quad 2.10 \mathrm{~L}$
9. How many moles of hydrogen gas are required to produce 4 moles of NH_{3} ?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a. $\quad 6 \mathrm{~mol} \mathrm{H}_{2}$
b. $\quad 4 \mathrm{molH}_{2}$
c. $\quad 2 \mathrm{molH}_{2}$
d. $1 \mathrm{molH}_{2}$
10. During an experiment you calculate that you should get 5.4 g of product from a reaction, but you only obtain 3.9 g of the product in the lab. What is your percent yield for this reaction?
a. 1.4%
b. 7.2 \%
c. 28%
d. 72%
11. Which of the following must be true of a reaction, if the change in heat involved in a chemical reaction has a positive sign?
a. Heat is lost to the surroundings
b. Heat is gained from the surroundings
c. No heat is exchanged during the reaction
12. Which of the following needs the greatest amount of heat to raise the temperature $1^{\circ} \mathrm{C}$?
a. 1 g Aluminum, $\mathrm{C}_{\mathrm{p}}=0.90 \frac{\mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}$
b. 1 g Iron, $\mathrm{C}_{\mathrm{p}}=0.46 \frac{\mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}$
c. 1 g Silver, $\mathrm{C}_{\mathrm{p}}=0.24 \frac{\mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}$
d. 1 g Platinum, $\mathrm{C}_{\mathrm{p}}=0.13 \frac{\mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}$

For each of the following problems involving calculations, show all work including units. If appropriate, indicate the equation used. Be sure to complete any conversions necessary. Record your answer with units in the box.
13. Determine the mass of nitrogen trihydride gas $\left(\mathrm{NH}_{3}\right)$ produced when 34.1 L of nitrogen gas, at STP, reacts with excess hydrogen.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

14. Complete the table.

15. What is the volume of a sealed container with 12.7 grams of O_{2} gas at $45^{\circ} \mathrm{C}$ and 2.5 atm ?

$$
C_{\text {solid }}=2.10 \frac{\mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}} \quad C_{\text {liquid }}=4.18 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}} \quad C_{\text {gas }}=2.00 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}} \quad \Delta \mathrm{H}_{\text {fus }}=334 \frac{\mathrm{~J}}{\mathrm{~g}} \text { for } \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}_{\text {vap }}=2260 \frac{\mathrm{~J}}{\mathrm{~g}} \text { for } \mathrm{H}_{2} \mathrm{O}
$$

18. Calculate the change in energy (in kJ) needed to convert 25.0 g of steam at $100.0^{\circ} \mathrm{C}$ to ice at $-15.0^{\circ} \mathrm{C}$ by following steps a and b below.
a. Using only variables, write the equation you will use to calculate the change in energy for the process described above.
b. Complete the calculation and report the total change in energy in kJ .

